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SUMMARY

The nucleolus plays a pivotal role in multiple key
cellular processes. An illustrative example is the
regulation of mitotic exit in Saccharomyces cerevi-
siae through the nucleolar sequestration of the
Cdc14 phosphatase. The peculiar structure of the
nucleolus, however, has also its drawbacks. The
repetitive nature of the rDNA gives rise to cohesion-
independent linkages whose resolution in budding
yeast requires the Cdc14-dependent inhibition of
rRNA transcription, which facilitates condensin
accessibility to this locus. Thus, the rDNA condenses
and segregates later than most other yeast genomic
regions. Here, we show that defective function of a
small nucleolar ribonucleoprotein particle (snoRNP)
assembly factor facilitates condensin accessibility
to the rDNA and induces nucleolar hyper-condensa-
tion. Interestingly, this increased compaction of the
nucleolus interferes with the proper release of
Cdc14 from this organelle. This observation provides
an explanation for the delayed rDNA condensation in
budding yeast, which is necessary to efficiently coor-
dinate timely Cdc14 release and mitotic exit with
nucleolar compaction and segregation.

INTRODUCTION

The nucleolus forms around the rDNA genes, which are arranged

as a cluster of tandemly repeated units [1, 2]. The rDNA repeats

are transcribed by the RNA polymerase I (Pol I), which generates

an initial pre-rRNA precursor that is cleaved and post-transcrip-

tionally modified with the help of small nucleolar ribonucleopro-

tein particles (snoRNPs) and other processing factors to give rise

to the mature rRNAs. Central components of the snoRNPs are

the small nucleolar RNAs (snoRNAs), a large class of non-coding

RNAs that guide sequence-specific chemical modifications of

the pre-rRNA and its post-transcriptional processing [3, 4]. The

snoRNAs are classified into two types, C/D box and H/ACA

box, and they work in close association with the core proteins
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of the snoRNPs, which differ for both classes of snoRNAs and

include the enzymes that mediate the modifications that each

catalyze in the pre-rRNA [3, 4]. The assembly of the final snoRNP

is a complex process that requires many factors [5]. Among

them, Rsa1/NUFIP1 plays a central role in the assembly of C/D

box snoRNPs bymediating the interaction between the core pro-

tein Snu13/15.5K and the Rvb1/p55 and Rvb2/p50 components

of the Hsp82/Hsp90 co-chaperone R2TP complex [6, 7].

Historically, the nucleolus has been primarily associated with

its function in ribosome biogenesis. However, this organelle plays

key roles in a variety of other fundamental processes [1, 8]. The

capacity of the nucleolus to specifically retain certain molecules

is a commonly employed strategy that cells use to regulate these

processes [1, 8, 9]. A classic example is the regulation of mitotic

exit in budding yeast through the control of the localization of the

Cdc14 phosphatase [10–12]. Cdc14 is sequestered in the

nucleolus from G1 to metaphase through its binding to Cfi/Net1

[11, 12]. However, at the metaphase-to-anaphase transition,

Cdc14 is first released toward the nucleus and then, later during

anaphase, also to the cytoplasm, where it triggers mitotic exit by

promoting the inactivation of mitotic cyclin-dependent kinase

(CDK) activity [10, 13]. The initial nucleolar release of Cdc14 is

facilitated by the Cdc-fourteen early anaphase release (FEAR)

network. Although not essential for cell viability, FEAR is critical

for accurate chromosome segregation and the coordination of

this process with key cell cycle events [10, 13]. Interestingly,

FEAR function is of pivotal importance for the proper segregation

of the nucleolus itself. In contrast tomost parts of the genome, the

rDNA repeats maintain cohesion-independent linkages after

metaphase and segregate late during anaphase [14–16]. Faithful

nucleolar segregation requires the Cdc14-mediated inhibition of

Pol I-dependent rDNA transcription during early anaphase, which

facilitates condensin loading on the rDNA and elimination of these

linkages [17]. However, the reasons behind this differential regu-

lation of rDNA condensation and the late nucleolar segregation

are still unknown.

After its initial release, the Mitotic Exit Network (MEN) pro-

motes the full liberation of Cdc14. This pathway is initiated

by the Tem1 GTPase, whose activity is negatively regulated

by Bfa1-Bub2 and promoted by the bud cortex-associated

protein Lte1 [18–20]. Tem1 triggers a signaling cascade that

includes the Cdc15 and Dbf2 kinases and allows a sustained

Cdc14 release [18, 21–23]. In contrast to FEAR, MEN is
vier Ltd.
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Figure 1. Hit1 Deficiency Leads to Synthetic

Lethality with lte1D

(A and B) Cells carrying the YCp50-LTE1 plasmid

(F1312, F527, F2065, F2061, and F2130 (A) or F1312,

F527, F2665, F2614, and F2834 (B)) were plated

by spotting 10-fold serial dilutions of a culture

(OD600 = 0.5) on minimal medium, without uracil

(SC-URA) or containing 0.3 mg/mL FOA (+FOA), and

incubated at 23�C.
(C and D) Wild-type cells expressing Hit1-13Myc

(F1389) were grown in YPD at 26�C, arrested in

G1 with 5 mg/mL a-factor, and then released into YPD

without pheromone at 26�C. (C) Percentages of

metaphase and anaphase cells are shown, as deter-

mined by the analysis of spindle and nuclear

morphologies. Error bars represent SD (n = 3). (D)

Hit1-13Myc levels were analyzed by western blot.

b-actin levels were used as a loading control.

(E–G) Wild-type cells expressing Hit1-EGFP and

Nop1-mCherry (F1744) were grown in YPD at 30�C,
blocked in G1 with 5 mg/mL a-factor, and released into

YPD without pheromone at 30�C. (E) Cell cycle pro-

gression is shown, as determined by the percentage of

unbudded, small-budded, and large-budded cells.

(F) Percentage of total Hit1-EGFP fluorescent signal in

the cytosol, nucleus, and nucleolus is shown. Error

bars represent SD (n = 20). (G) Representative images

display Hit1-EGFP (green) and Nop1-mCherry (red)

localization, the morphology of the nucleus (DAPI,

blue), a phase-contrast (Ph) image and a merged

image.

See also Figures S1 and S2.
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Figure 2. Hit1-Rsa1 Deficiency Impairs Cell Cycle Progression

Cells expressing Pds1-3HA (F1586, F1423, and F3285) were grown in YPD at 23�C, arrested in G1 with 5 mg/mL a-factor, and released into YPDmediumwithout

pheromone at 26�C. See also Figure S3.

(legend continued on next page)
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essential and strictly required for the completion of mitosis

[10]. However, the contribution of the FEAR pathway to the

proper regulation of mitotic exit is not to be disregarded. As

such, FEAR becomes indispensable for cell viability in the

absence of Lte1 [24].

Hit1 is a C/D box snoRNP assembly factor that acts in a

complex with Rsa1, and it is required to maintain steady-state

levels of this protein in budding yeast, a function that seems to

be conserved [25]. Interestingly, simultaneous deletion of the

HIT1 and LTE1 genes leads to synthetic lethality [24], which sug-

gests that the lack of Hit1 could interfere with the functionality of

FEAR. Here, we uncover a new link between rRNA-associated

factors and the regulation of mitotic exit by demonstrating

that the lack of Hit1-Rsa1 determines nucleolar hyper-conden-

sation, which compromises timely Cdc14 release. Importantly,

our results provide an answer to the long-standing question

of why the rDNA segregates later than most regions of the

S. cerevisiae genome.

RESULTS

Simultaneous HIT1 and LTE1 Deletion Leads to
Synthetic Lethality that Is Rescued by Bfa1 Inactivation
Hit1 is a snoRNP assembly factor that contributes to C/D box

snoRNA stability [25]. Interestingly, simultaneous deletion of

HIT1 and LTE1 (the gene encoding the MEN activator) leads to

synthetic lethality [24], which suggests that lack of Hit1 could

interfere with the functionality of the FEAR pathway. The syn-

thetic lethality associated with simultaneous deficiency of both

Lte1 and a factor that compromises Cdc14 early anaphase

release is determined by the inability of the cells to promote

mitotic exit, and it can be rescued by the deletion ofBFA1, which

encodes a MEN inhibitor [26]. To evaluate whether this was the

case for Hit1, we generated S. cerevisiae hit1D lte1D cells also

carrying the YCp50-LTE1 centromeric plasmid, which contains

a wild-type copy of both LTE1 and the URA3 gene [27], and

we analyzed their capacity to grow in medium containing 5-fluo-

rotic acid (FOA), which prevents the growth of URA3 cells [28].

Remarkably, in contrast to wild-type (W303, ura3-1), hit1D, or

lte1D cells carrying YCp50-LTE1 and accordingwith the simulta-

neous lack of HIT1 and LTE1 being synthetically lethal, hit1D

lte1D YCp50-LTE1 cells were unable to lose the plasmid and

grow in medium with FOA (Figure 1A). Furthermore, the capacity

of hit1D lte1D YCp50-LTE1 cells to grow in FOA was restored by

the additional deletion of BFA1, which suggests that the syn-

thetic lethality is likely associated with defective Cdc14 function

and, hence, the inability to promote mitotic exit (Figure 1A).

Similar results were obtained when LTE1 was inactivated using

a glucose-repressible promoter (Figure S1A). Also accordingly,

and as previously shown for mutations that compromise FEAR

function [29], hit1D impaired the viability at semi-permissive tem-

peratures of cells carrying tem1-3, a thermosensitive allele of the

MEN-initiating GTPase [18] (Figure S1B).
(A) Cell cycle progression as determined by the percentage of unbudded, small-

(B) DNA content estimated by fluorescence-activated cell sorting (FACS) analysi

(C) Analysis of cell cycle progression based on spindle and nuclear morpholo

represent SD (n = 3).

(D) Pds1-3HA, Clb2, and Sic1 levels were analyzed by western blot. Pgk1 levels
Hit1 is functionally linkedwith Rsa1, with whom it forms a com-

plex [25]. Remarkably, rsa1D lte1D YCp50-LTE1 cells were also

unable to grow in FOA unless BFA1 was additionally deleted in

this background (Figure 1B). Therefore, our results indicate

that it is the loss of function of Hit1-Rsa1, and not an independent

specific feature of Hit1-deficient mutants, that determines the

synthetic lethality in cells that also lack Lte1.

To evaluate how Hit1 deficiency could interfere with the early

anaphase release of Cdc14, we first analyzed the levels and

localization of Hit1 during the cell cycle. In cells released from

a G1 arrest and allowed to synchronously progress into mitosis,

Hit1 levels remained constant throughout the cell cycle (Figures

1C and 1D). Remarkably, and although localization of Hit1 did

not change either, the protein was permanently found both in

the nucleus and nucleolus of the cells, despite the nucleolar

marker used (Figures 1E–1G; Figures S1C–S1E). This places

Hit1 in an optimal sub-cellular location for a factor that could

affect Cdc14 release. Similar results were obtained with Rsa1

(Figures S1F–S1M). Hit1 is required to maintain steady-state

levels of Rsa1 [25] (Figures S2A and S2B). Interestingly, rsa1D

cells also showed reduced levels of Hit1 (Figures S2C

and S2D). However, while nuclear and nucleolar localization of

Hit1 was severely affected in rsa1D cells (Figure S2E), Rsa1 still

localized toboth compartments in cells lackingHIT1 (FigureS2F),

which suggests that, despite being interdependent for their

expression, it is Rsa1 that determines localization of the com-

plex. This is in agreement with the fact that only Rsa1 seems

to bear a clear nuclear localization signal [25].

HIT1 Deletion Impairs Mitotic Exit
We next analyzed cell cycle progression in wild-type and hit1D

cells that were first arrested in G1 and then allowed to synchro-

nously enter the cell cycle at 26�C. Deletion of HIT1 caused an

overall delay in cell cycle progression (Figures 2A–2D). Despite

this general delay, while hit1D cells accumulated in metaphase

approximately only 15 min later than the wild-type (Figure 2C),

the hit1D mutant then completed the metaphase-to-anaphase

transition and exited mitosis with a substantially longer delay,

as estimated by the analysis of Pds1 (securin, degraded at the

metaphase-to-anaphase transition [30]), Clb2 (a cyclin degraded

during mitotic exit [31]), and Sic1 (a CDK inhibitor [31]) (Fig-

ure 2D). Similar results were obtained when cell cycle progres-

sion was analyzed in rsa1D cells (Figure 2). Importantly, the initial

delay in Pds1 degradation in hit1D cells, and, therefore, in the

initiation of the metaphase-to-anaphase transition, was not

associated with defects in prior cell cycle stages as a conse-

quence of the activation of the DNA damage or the spindle as-

sembly checkpoints (Figures 3A and 3B). Hence, our results

are in agreement with the lack of Hit1-Rsa1, besides interfering

with other cell cycle stages, specifically impairing mitotic exit.

Hit1 was originally described as an essential gene for

growth at high temperatures (hence its name, high-temperature

growth 1) [32, 33], which contrasts with the cold-sensitive
budded, and large-budded cells. Error bars represent SD (n = 3).

s.

gies. Percentages of metaphase and anaphase cells are shown. Error bars

were used as a loading control.
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Figure 3. Lack of Hit1-Rsa1 Impairs Cdc14 Early Anaphase Release

(A and B) Cells expressing Pds1-3HA (F1586, F3635, F1423, and F3636) were grown in YPD at 23�C, arrested in G1 with 5 mg/mL a-factor, and released into YPD

mediumwithout pheromone at 26�C. (A) Analysis of cell cycle progression based on spindle and nuclear morphologies is shown. Percentages of metaphase and

(legend continued on next page)
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phenotype of lte1D cells [34] (Figure S3A). Deletion of HIT1 or

RSA1, however, had a similar impact on cell cycle progression

both at 26�C and 37�C (Figures S3B–S3E), which suggests

that the thermosensitivity of hit1D cells is associated with addi-

tional problems not specifically linked to a defective regulation

of cell cycle progression. This is in agreement with Hit1-Rsa1

carrying out different functions in the cells that are distinctively

affected by the temperature, hence making it difficult to assign

the cause of this temperature-sensitive phenotype [35, 36]. Sub-

sequently, we carried out the characterization of the conse-

quences of the lack of Hit1-Rsa1 on mitotic exit at 26�C, unless
otherwise indicated.

Hit1 overexpression also impaired cell viability. However, in

contrast to HIT1 deletion, elevated Hit1 levels affected cell

growth at all temperatures tested (Figure S4A). Furthermore,

increased levels of Hit1 or Rsa1 did not seem to affect cell

cycle progression, and, contrary to overexpression of the

FEAR component Spo12 [29], they did not rescue the lethality

associated with tem1-3 at semi-permissive temperatures (Fig-

ures S4B, S4D, S4F, and S4H). This strongly suggests that

increased levels of Hit1-Rsa1 do not only impair cell viability by

interfering with Cdc14 function but also as a consequence of

other unrelated problems.

Lack of Hit1-Rsa1 Compromises Cdc14 Early Anaphase
Release
Our previous results suggested that Hit1-Rsa1 could be impor-

tant for the initial liberation of Cdc14. Therefore, we analyzed

the dynamics of Cdc14 release in hit1D and rsa1D cells during

the metaphase-to-anaphase transition. Since HIT1 or RSA1

deletion caused a general cell cycle delay that was already

evident before metaphase (Figure 2), we first arrested cells at

this cell cycle stage by conditionally inactivating the anaphase-

promoting complex cofactor Cdc20 [31], and then we followed

Cdc14 localization as cells synchronously entered the meta-

phase-to-anaphase transition after Cdc20 reactivation. To this

end, cells carried the CDC20 gene under control of the methio-

nine-repressible MET3 promoter (pMET3-CDC20). Additionally,

cells carried the cdc15-as1 allele, which encodes an ATP

analog-sensitive Cdc15 kinase [37]. Cdc15 inactivation prevents

the MEN-dependent Cdc14 release in late anaphase, so that

only the partial and transient FEAR-induced release of the phos-

phatase during early anaphase can be observed [38], thus fa-

cilitating evaluation of the specific impact of hit1D on this

process. As expected, pMET3-CDC20 cdc15-as1 cells transito-

rily released Cdc14 into the nucleus as they exited the Cdc20-

dependent metaphase block, although the phosphatase was
anaphase cells are shown. Error bars represent SD (n = 3). (B) Pds1-3HA and C

control.

(C–K) Cells carrying cdc15-as1, pMET3-CDC20, and 3HA-CDC14 alleles (F2073, F

26�C, arrested in G1 with 7.5 mg/mL a-factor, and released into minimal mediu

metaphase (t = 0 min), cells were released into minimal medium without methi

determined based on spindle and nuclear morphologies. Percentages of metap

and J) Percentage of cells displaying 3HA-Cdc14 sequestered (white bars) or rele

(K) Representative images display Cdc14 localization (red). Tubulin (green), nucle

are also shown.

(L) Cells carrying the YCp50-LTE1 plasmid (F1312, F527, F2065, F2665, F2602, F2

serial dilutions of a culture (OD600 = 0.5) on minimal medium, without uracil (�UR

See also Figure S4.
then re-sequestered as a result of the inhibition of MEN due to

Cdc15 inactivation (Figures 3C, 3D, and 3K). This transient

Cdc14 release was not observed in pMET3-CDC20 cdc15-as1

cells when FEAR was inactivated by simultaneous SPO12 and

BNS1 deletion [38] (Figures 3E and 3F). Remarkably, HIT1 or

RSA1 deletion also impaired the Cdc14 early anaphase release

in pMET3-CDC20 cdc15-as1 cells (Figures 3G–3J). Furthermore,

and similar to what was observed for the spo12D bns1Dmutant,

Pds1 degradation was also significantly delayed in hit1D and

rsa1D cells released from the metaphase arrest when compared

to the wild-type, in agreement with these mutants not efficiently

inducing theCdc14-dependent feedback loop that enhances se-

curin degradation [39] (Figure S4I).

Finally, we also analyzed whether the synthetic lethality

caused by simultaneous deletion of HIT1 or RSA1 and LTE1

could be rescued by actively facilitating the nucleolar release

of Cdc14. The tab6-1 allele encodes a mutant Cdc14 protein

with reduced affinity for Cfi1/Net1 [40], which is prematurely

found out of the nucleolus but does not affect rDNA segregation

or condensation (Figures S4J–S4R). Notably, tab6-1 allowed

both hit1D lte1DYCp50-LTE1 and rsa1D lte1DYCp50-LTE1 cells

to grow in FOA (Figure 3L), which further demonstrates that the

synthetic lethality of hit1D lte1D and rsa1D lte1D cells is caused

by their incapacity to efficiently promote Cdc14 nucleolar

liberation.

HIT1 or RSA1 Deletion Promotes Nucleolar Hyper-
condensation
To unveil the mechanisms by which lack of Hit1-Rsa1 impairs

mitotic exit, we first analyzed whether Hit1 and Cdc14 can

directly interact using bimolecular fluorescence complementa-

tion (BiFC) assays [41]. As a control, we initially corroborated

that Cdc14 and Cfi/Net1, whose association has been widely

established by other means [11, 12], strongly interacted and

gave rise to a fluorescent signal that localized to the nucleolus

(Figures S5A and S5B). Remarkably, a fusion of Hit1 with the

Venus fluorescent protein N-terminal domain (VN) strongly

interacted with the nucleolar protein Nop1 fused to the C-termi-

nal Venus domain (VC), and it generated a fluorescent signal

restricted to the nucleolus (Figures S5A, S5C, and S5D). This

indicates that Hit1-VN was correctly expressed and localized,

in contrast to Hit1-VC, which seemed not to be functional (Fig-

ure S5A). Interestingly, the in vivo Hit1-Nop1 interaction had

not been previously described, although it is in agreement with

the isolation of Nop1 in tandem affinity purifications using

Hit1-TAP [25]. This interaction is not cell cycle regulated (Fig-

ure S5C), which is congruent with Hit1 being permanently found
lb2 levels were analyzed by western blot. Pgk1 levels were used as a loading

2508, F2205, and F3410) were grown inminimal mediumwithout methionine at

m without pheromone and with 10 mM methionine at 26�C. Once blocked in

onine and with 20 mM 1-NA-PP1. (C, E, G, and I) Cell cycle progression was

hase and anaphase cells are shown. Error bars represent SD (n = 3). (D, F, H,

ased (black bars) from the nucleolus is shown. Error bars represent SD (n = 3).

ar morphology (DAPI, blue), a phase-contrast (Ph) image, and a merged image

603, F3459, F2061, F2614, F2601, and F3461) were plated by spotting 10-fold

A) or containing 0.3 mg/mL FOA (+FOA), and incubated at 23�C.
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in the nucleolus (Figures 1E–1G). In contrast to the strong Hit1-

Nop1 interaction, cells showed either non-detectable or very

weak fluorescent nucleolar signal when the putative interactions

between Hit1-VN and either Cdc14-VC or Net1-VC were

analyzed (Figures S5A and S5E). Since we were also unable to

co-immunoprecipitate Hit1 with Cdc14, our results suggest

either that Hit1 does not directly interact with Cdc14 or that

this interaction is really transient or weak. Finally, and although

phosphorylation of Cdc14 and Net1, which promotes Cdc14

release [42], was delayed in hit1D cells in agreement with their

slower cell cycle progression, no evident differences in the phos-

phorylation levels of these proteins were observed in this mutant

when compared to the wild-type (Figures S5F and S5G).

We next analyzed whether lack of Hit1 could interfere with the

localization or function of FEAR components, such as Fob1 [27].

Interestingly, and although we did not observe any obvious

defect in the localization of Fob1 to the nucleolus, the

morphology of this organelle seemed to be abnormal in the

hit1D mutant (Figures S6A and S6B). Specifically, the nucleolus

appeared more compacted in hit1D cells than in the wild-type,

which could be indicative of rDNA hyper-condensation. In

budding yeast, the rDNA fully condenses in anaphase, later

than most other genomic regions [14, 15, 43, 44]. Compaction

of the rDNA locus can be analyzed by visualizing a fluorescently

tagged version of the rDNA-binding proteinCfi1/Net1 [16, 44–46].

In G1, the nucleolus of wild-type cells displays a characteristic

puff-like uncondensed appearance [43, 45] (cloud, Figure 4A).

Then, as the cells progress through the cell cycle, the rDNA

gets gradually more condensed until it finally adopts a character-

istic line-like appearance once maximal nucleolar condensation

is achieved [43–46] (Figures 4A–4D). Remarkably, both hit1D

and rsa1D cells displayed nucleolar morphologies associated

with more condensed forms of the rDNA already from G1 to

metaphase (Figures 4C, 4D, and S6D).

Next, we more carefully compared the kinetics of rDNA

condensation in hit1D and rsa1D cells as they transited from

metaphase to anaphase. According to previous analyses of this

transition [46], cells were classified into four categories (A to C

[anaphase bridges] and D) that were representative of different

stages of rDNA condensation (Figure 4B), from a less condensed

bridge morphology (category A) to the most condensed line-like

appearance observed once both copies of the rDNA separate

(category D). As suggested by our previous observations, the

rDNA locus was prematurely hyper-condensed in both hit1D
Figure 4. Lack of Hit1-Rsa1 Leads to Nucleolar Hyper-condensation

(A–E) Cells expressing Spc42-mCherry and Net1-EGFP (F2301, F2303, and F32

5 mg/mL a-factor, and released into fresh medium without pheromone at 26�C.
categories of nucleolar compaction. Nuclear (DAPI, blue) and nucleolar (Net1-EG

image, and a merged image are shown. (C) Cell cycle progression was determine

anaphase cells are shown. Error bars represent SD (n = 3). (D) Percentage of c

represent SD (n = 3). (E) Percentage of cells within each of the categories (A–D) rep

to spindle length.

(F) Representative examples of hyper-condensation in hit1D cells expressing Net1

image, and a merged image are also shown.

(G) Condensin enrichment at different regions of the rDNA in wild-type (F2702),

precipitationwith Brn1-Pk9 and real-timePCR. Amplification efficiencieswere norm

the input and the immunoprecipitated in the tagged strain relative to the same rati

type. Error bars represent SEM (n=3). Statistically significant differences (**p<0.01

See also Figures S5–S7.
and rsa1D cells, with an elevated percentage of cells already dis-

playing maximal rDNA compaction at spindle lengths shorter

than 6 mm and an overall reduced nucleolar size (Figures 4E,

4F,S6D, andS6E). These resultswere very similarwhennucleolar

morphology was analyzed using Fob1 (Figures S6A–S6C),

another bona fide rDNAmarker [16, 44]. The increase in nucleolar

condensation was not observed in spo12D bns1D cells, indi-

cating that this phenotype is not shared by all mutants affected

inCdc14 early anaphase release (Figures S6F–S6K). Importantly,

we did not observe visible defects in spindlemorphology or elon-

gation in the hit1D and rsa1D mutants during the metaphase-to-

anaphase transition (Figures S6L–S6N), which, together with the

fact that rDNA hyper-condensation was evident in thesemutants

even before spindle elongation was initiated as cells exitedmeta-

phase (Figures 4C and 4D), rules out that increased nucleolar

compaction in hit1D and rsa1D cells could be instead explained

by alterations in the kinetics of spindle extension that could pro-

vide more time for rDNA condensation to occur. Furthermore,

increased nucleolar compaction was also not due to shortening

of the rDNA array length in the hit1D and rsa1D mutants (Fig-

ure S7A). Finally, increased Hit1 and Rsa1 levels induced a mild

decompaction of the rDNA, further supporting that normal levels

of both proteins are essential to ensure proper nucleolar conden-

sation (Figures S4B–S4G).

According with our previous analyses, cells lacking HIT1 or

RSA1 showed increased association of the non-SMC condensin

subunitBrn1with the rDNA (Figure4G). It isworthnoting that even

2-fold changes in condensin levels can substantially affect nucle-

olar condensation [43]. Increased condensin associationwith the

rDNA in both mutants was already observed from G1 to meta-

phase, also according with our previous observations (Figures

S7B and S7C). We did not find differences in Brn1 loading on

the rDNA in hit1D or rsa1D cells with respect to the wild-type dur-

ing anaphase (Figure S7D), but this was expected since nucleolar

condensation is maximum for wild-type cells at this stage. How-

ever, evaluation of the nucleolar release of the Smc4 condensin

subunit, which can be used to analyze the kinetics of rDNA de-

condensation during mitotic exit [17, 47], indicated that deletion

of either HIT1 or RSA1 caused persistent rDNA condensation in

cells exiting from a cdc15-as1-induced anaphase arrest to a

similar extent as when Pol I transcription was inhibited using ra-

pamycin [47] (Figures S7E and S7F). Our results thus demon-

strate that lack of Hit1-Rsa1 facilitates condensin accessibility

to the rDNA, which determines nucleolar hyper-condensation.
87) were grown in YPD with 300 mg/mL adenine at 23�C, arrested in G1 with

(A and B) Representative images show cells for each of the pre-established

FP, green) morphologies, the SPBs (Spc42-mCherry, red), a bright-field (BF)

d based on spindle and nuclear morphologies. Percentages of metaphase and

ells within each of the nucleolar compaction categories is shown. Error bars

resentative of the metaphase-to-anaphase transition are distributed according

-EGFP (F2169). Besides Net1-EGFP (green), DAPI (blue), a phase-contrast (Ph)

hit1D (F2730), and rsa1D (F3248) cells, as determined by chromatin immuno-

alized against theTUB2 gene. Enrichment was calculated as the ratio between

o in an untagged control (F496). Graphs represent fold increase relative to wild-

and *p<0.05), relative to thewild-type andaccording to a t test, are also shown.
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Deficient Cdc14 Early Anaphase Release in hit1D and
rsa1D Cells Can Be Rescued by Alleviating Nucleolar
Hyper-Condensation
Increased nucleolar compaction in hit1D cells could interfere

with the FEAR-dependent Cdc14 release. If this were the case,

alleviating nucleolar hyper-condensation should rescue the effi-

cient release of the phosphatase during early anaphase in hit1D

cells. To test this prediction, we used the ycs4-2 allele, which

encodes a thermolabile Ycs4 condensin subunit [48]. rDNA

condensation is defective in the ycs4-2 mutant even at per-

missive temperatures [49]. Remarkably, expression of this allele

relieved the increased nucleolar condensation in hit1D cells (Fig-

ures 5A–5H). Furthermore, HIT1 or RSA1 deletion alleviated the

growth defects shown by ycs4-2 cells at semi-permissive tem-

peratures (Figure 5I). Finally, we analyzed whether defective

FEAR-dependent Cdc14 release in hit1D cells (Figures 3G and

3H) could be prevented by partially impairing condensin function

with the ycs4-2 allele. Excitingly, introduction of ycs4-2 in pMET-

CDC20 cdc15-as1 hit1D cells indeed restored early Cdc14

release at a semi-permissive temperature (Figures 6A and 6B).

In a cdc14-1 mutant at the restrictive temperature, the rDNA

fails to segregate because rRNA transcription by Pol I, which

interferes with rDNA condensation, cannot be inhibited by

Cdc14 [17]. In contrast, the rDNA segregates normally in a

cdc15-2 mutant despite the cells also arresting in anaphase

due to MEN inactivation, since Cdc14 can be activated by the

FEAR during the metaphase-to-anaphase transition [17].

Accordingly, the rDNA segregation defect in cdc14-1 cells was

abolished when Pol I-dependent transcription was inhibited

with rapamycin, which induces nucleolar hyper-condensation

(Figures 6C and 6D). Excitingly, increased rDNA condensation

induced byHIT1 orRSA1 deletion also restored normal nucleolar

segregation in this mutant background (Figures 6C and 6D),

which improved the growth of cdc14-1 cells at semi-permissive

temperatures (Figure 6E). Hence, our results support that lack of

Hit1-Rsa1 determines a hyper-condensation of the rDNA that

impairs Cdc14 nucleolar release.

Lack of Hit1-Rsa1 Promotes Nucleolar Hyper-
Condensation by Interfering with RNA Pol I Activity
To more conclusively demonstrate that it is the premature rDNA

hyper-condensation that determines a defective Cdc14 early

anaphase release in hit1D and rsa1D cells, we took advantage

of the capacity of rapamycin to induce nucleolar compaction [47]

without affecting rDNA copy number (Figure S7A). Remarkably,

rapamycin treatment severely impacted the viability of lte1D cells

(Figure 7A), similar to what was shown for hit1D and rsa1D (Fig-

ures 1A and 1B). Furthermore, and also analogously to the

synthetic lethality caused by simultaneous deletion of LTE1

and either HIT1 or RSA1, increased sensitivity of lte1D cells to

rapamycin was rescued by the additional deletion of BFA1 (Fig-
Figure 5. Nucleolar Hyper-condensation in hit1D Cells Is Relieved by t

(A–H) Cells expressing Spc42-mCherry and Net1-EGFP (F2301, F2303, F3388,

G1 with 5 mg/mL a-factor, and released at 30�C into fresh medium without pherom

and nuclear morphologies. Percentages of metaphase and anaphase cells are sh

each of the pre-established categories of nucleolar compaction is shown. Error

(I) Cells (F496, F2000, F2613, F2767, F2810, and F3408) were plated by spotting

indicated temperatures.
ure 7A). Finally, rapamycin treatment strongly compromised the

viability of tem1-3 cells, while it improved the growth of cdc14-1

cells, as also shown for hit1D and rsa1D (Figure 7A).

Nucleolar compaction is also promoted during nutrient starva-

tion [50], which leads to Pol I delocalization from the nucleolus

and inhibition of rDNA transcription [50]. To further strengthen

our results, we analyzed Cdc14 localization in cells starved of

carbon or nitrogen. Remarkably, Cdc14 release was drastically

reduced under these conditions, similarly as after rapamycin

treatment (Figures 7B and 7C).

Since both rapamycin and starvation recapitulated the pheno-

types associated with the defects in the early release of Cdc14

caused by the lack of Hit1-Rsa1, we verified whether the

increased association of condensin to the rDNA in hit1D and

rsa1D cells could be due to a reduction in the transcriptional

activity of RNA Pol I in these mutants. Excitingly, HIT1 or RSA1

deletion determined a significant reduction in rRNA transcription

throughout the cell cycle (Figure 7D). Therefore, our results

demonstrate that defective Hit1-Rsa1 function interferes with

Pol I-dependent rRNA transcription, thereby promoting rDNA

hyper-condensation, which, in turn, obstructs nucleolar Cdc14

release.

DISCUSSION

Hit1 plays an important role during ribosome biogenesis in

Saccharomyces cerevisiae [25]. Together with Rsa1, Hit1 pro-

motes the stability of C/D box snoRNAs and facilitates normal

kinetics of pre-rRNA maturation [25]. Interestingly, lack of Hit1

or Rsa1 leads to synthetic lethality in combination with loss of

the MEN activator Lte1, a feature shared by mutants in which

the early anaphase release of Cdc14 is compromised [24].

Here we demonstrate that the Hit1-Rsa1 snoRNP assembly

factor is necessary to promote an efficient nucleolar release of

Cdc14 and, thus, to ensure the proper function of this pho-

sphatase, which establishes a fascinating new link between

rRNA-associated factors and the regulation of mitotic exit.

Furthermore, and excitingly, our observations demonstrate that

the late condensation of the rDNA in budding yeast is necessary

to efficiently coordinate mitotic exit with nucleolar segregation.

We have demonstrated that a lack of Hit1-Rsa1 facilitates

condensin accessibility to the rDNA and determines nucleolar

hyper-condensation. This is in agreement with previous ob-

servations suggesting that mice C/D snoRNP components p55

and p50, as well as the p50 yeast ortholog (Rvb2), could co-

ordinate snoRNP assembly with chromatin remodeling [51, 52].

Interestingly, Rsa1/NUFIP1 interacts with Rvb1/p55 and

Rvb2/p50 in both yeast and human cells, and it facilitates

their recruitment on pre-snoRNPs [6, 7]. How can problems

in snoRNP assembly and rRNA maturation promote nucleolar

hyper-condensation? In S. cerevisiae, rDNA condensation only
he Introduction of ycs4-2

and F3390) were grown at 23�C in YPD with 300 mg/mL adenine, arrested in

one. (A, C, E, and G) Cell cycle progression was determined based on spindle

own. Error bars represent SD (n = 3). (B, D, F, and H) Percentage of cells within

bars represent SD (n = 3).

10-fold serial dilutions of a culture (OD600 = 0.5) on YPD and incubated at the
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occurs once rRNA transcription is significantly reduced by the

Cdc14-dependent inhibition of RNA Pol I during anaphase

[14, 15, 17]. Remarkably, our results demonstrate that HIT1 or

RSA1 deletion impairs Pol I activity, thus facilitating condensin

loading on the rDNA. Despite that pre-rRNA processing and

modification were initially proposed to take place on the

completed transcript, it has been later shown that these pro-

cesses occur co-transcriptionally and that they are, in fact, coor-

dinated [53, 54]. As such, the SSU processome, a large complex

required for small ribosomal subunit biogenesis, is also essential

to ensure an efficient Pol I transcription, although themechanism

by which it links both processes remains unknown [54]. Remark-

ably, Hit1-Rsa1 play a key role in the early assembly of the U3

snoRNP, an essential component of the SSU processome

[54, 55]. Thus, a lack of Hit1-Rsa1 could interfere with the fu-

nction of the SSU processome in promoting Pol I transcription.

However, besides interfering with rRNA transcription, we do

not exclude that defects in snoRNP assembly could also pro-

mote nucleolar compaction by additional means. As such,

snoRNPs could facilitate recruitment of specific decondensation

factors to the rDNA. Interestingly, the analysis of chromatin-

associated RNAs (caRNAs) inDrosophila cells indicated a strong

enrichment in snoRNA molecules, which stably interact with

chromatin and recruit the decondensation factor Df31 at specific

chromatin domains to maintain them in an accessible state [56].

This enrichment was also observed in human cells, suggesting

an evolutionarily conserved process. Hence, our results could

provide further support to an emerging body of evidences favor-

ing an essential role of snoRNAs and snoRNA-associated

proteins in modulating the accessibility of chromatin regions

and the proper establishment of the nuclear and nucleolar

architecture.

Interestingly, increased rDNA compaction in hit1D and rsa1D

cells impairs the function of the FEAR pathway and the timely

nucleolar release of Cdc14. Accordingly, defects in the early

anaphase liberation of the phosphatase caused by a lack of

Hit1-Rsa1 can be alleviated by reducing condensin activity using

a temperature-sensitive mutant of the condensin subunit Ycs4.

Alsosupporting this idea, theproblemsassociatedwith thedefec-

tiveCdc14 release inhit1Dand rsa1Dcells canbe recapitulatedby

promoting rDNAhyper-condensationusing rapamycin or starving

cells of nutrients. The nucleolar retention of Cdc14 during starva-

tion is fascinating, and it suggests that sequestration of this phos-

phatase by means of an increased nucleolar condensation could

be used as a strategy to restrict cell cycle progression under

certain physiological conditions. It would be interesting to further
Figure 6. Reducing Condensin Activity Alleviates Defective Cdc14 Rel

(A and B) Cells carrying cdc15-as1, pMET3-CDC20, and 3HA-CDC14 alleles (F20

in Figures 3C–3J but at 30�C. Subsequently, cells were released into minimal m

progression was determined based on spindle and nuclear morphologies. Perce

(n = 3). (B) Percentage of cells displaying 3HA-Cdc14 sequestered (white bars

SD (n = 3).

(C and D) cdc14-1 (F3318, F3443, and F3444) and cdc15-2 (F3449, F3450, an

anaphase at 34�C for 2.5 hr. (C) Representative images display correct and inc

green) morphologies, the SPBs (Spc42-mCherry, red), a Ph, and a merged image

(black bars) nucleolar segregation is shown. As a control, cells were treated (+

Statistically significant differences (***p < 0.001) relative to the untreated control

(E) Cells (F496, F2000, F2613, F3311, F3445, and F3446) were plated, by spotting

indicated temperatures.
analyze in the future whether this is the case and the factors that

contribute to Cdc14 retention under these conditions.

Due to the defects in the initial nucleolar release of Cdc14,

the hit1D and rsa1D mutants become highly dependent on

the MEN-activating function of Lte1 to finally promote liberation

of the phosphatase and mitotic exit, which explains the syn-

thetic lethality caused by simultaneous deletion of LTE1 and

HIT1 or RSA1. This phenotype could be further enhanced by

the fact that lte1D selectively delays the release of Brn1 from

the rDNA, which has a negative impact in nucleolar decompac-

tion in late anaphase [57]. Nucleolar hyper-condensation could

affect Cdc14 release by impeding the destabilization of its

binding to Cfi1/Net1. Accordingly, expression of a Cdc14

mutant protein with reduced affinity to its inhibitor [40] effi-

ciently rescues hit1D and lte1D synthetic lethality. Although a

lack of Hit1-Rsa1 does not seem to interfere with Cdc14 or

Cfi1/Net1 phosphorylation by the Polo-like kinase Cdc5, which

promotes nucleolar release of the phosphatase [42], we cannot

exclude that increased association of Cdc14 and Cfi1/Net1 in

hit1D and rsa1D cells was caused by reduced accessibility of

these proteins for Cdc5. Alternatively, increased rDNA compac-

tion could simply impose a physical constraint to the release of

Cdc14.

A defective FEAR-dependent Cdc14 liberation impairs rDNA

condensation and nucleolar segregation [14, 15]. Remarkably,

our results further demonstrate now that, contrariwise, prema-

ture rDNA condensation impairs FEAR function and timely

Cdc14 release. In contrast to spo12D bns1D cells, in which

defective FEAR-dependent Cdc14 liberation interferes with the

dynamics of rDNA condensation, in hit1D and rsa1D cells it is

the release of the phosphatase that is affected by alterations in

the process of rDNA compaction. This differential behavior al-

lowed us to finally provide an explanation to a long-standing

open question. rDNA segregation in budding yeast encom-

passes two temporally separated steps: a first step comprising

the unzipping of the rDNA locus from its most centromere-prox-

imal to its most centromere-distal region, and a second step that

involves rDNA compaction and depends on Cdc14 [44]. This

Cdc14-dependent condensation of the rDNA only occurs during

anaphase and is independent of cohesion [14, 15, 43, 44].

Intriguingly, the reason for the maintenance of a cohesin-inde-

pendent linkage at the rDNA until anaphase onset is still un-

known. Our results now provide a definitive answer to this

conundrum. Since Cdc14 activity is mainly regulated by means

of its subcellular localization, the precise control of its nucleolar

release is of pivotal importance for the cells in order to temporally
ease in hit1D Cells

73, F2205, F2508, F2880, and F2884) were blocked in metaphase (t = 0 min), as

edium without methionine, with 10 mM 1-NA-PP1, and at 30�C. (A) Cell cycle
ntages of metaphase and anaphase cells are shown. Error bars represent SD

) or released (black bars) from the nucleolus is shown. Error bars represent

d F3451) cells expressing Net1-EGFP and Spc42-mCherry were arrested in

orrect nucleolar segregation. Nuclear (DAPI, blue) and nucleolar (Net1-EGFP,

are shown. (D) Percentage of cells displaying correct (white bars) or incorrect

Rap) or not (�Rap) with 20 nM rapamycin. Error bars represent SD (n = 3).

(�Rap), and according to a one-way ANOVA test, are also shown.

10-fold serial dilutions of a culture (OD600 = 0.5) on YPD, and incubated at the
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Figure 7. rDNA Transcription Is Reduced in the

Absence of Hit1-Rsa1

(A) Ten-fold serial dilutions from cell cultures (F496,

F2000, F2613, F549, F533, F986, F2135, and F3311) at

OD600 = 0.5 were spotted on YPD plates without (DMSO)

or with 1.5, 3, or 4 nM rapamycin and incubated at 23�C.
(B and C) Cells expressing Cdc14-EGFP and Net1-

mCherry (F3424) and growing in minimal medium (SC)

were switched to SC without nitrogen (�N), SC without

carbon (�C), or treated with 20 nM rapamycin (+Rap) for

1 hr. (B) Graph represents the percentage of metaphase

and early and late anaphase cells (estimated by spindle

length) with Cdc14-EGFP sequestered (black bars) or

partially (gray bars) or fully released (white bars) from the

nucleolus. Error bars represent SEM (n = 3). Statistically

significant differences (***p < 0.001 and **p < 0.01) in the

percentage of cells with Cdc14 sequestered relative to

that of cells growing in SC, and according to a one-way

ANOVA test, are also shown. (C) Representative images

display Cdc14-EGFP localization (green). Net1-mCherry

(red), nuclear morphology (DAPI, blue), a phase-contrast

(Ph) image, and a merged image are also shown.

(D) Quantification of rRNA transcription by RT-PCR,

using primers for the ITS2 region of the rDNA and for the

internal reference gene PDA1, in cdc15-as1 (control,

F511), hit1D cdc15-as1 (hit1D, F3334), and rsa1D

cdc15-as1 (rsa1D, F3338) cells arrested either in G1with

5 mg/mL a-factor, in metaphase with 150 mg/mL noco-

dazole, or in anaphase with 10 mM 1-NA-PP1. Graph

indicates fold increase relative to the cdc15-as1 control

strain (F511). Error bars indicate SEM (n = 3). Statistically

significant differences (***p < 0.001, **p < 0.01, and

*p < 0.05) relative to the control, and according to a one-

way ANOVA test, are also shown.
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coordinate key cell cycle events [10, 13, 14]. Chromosome

condensation, which imparts longitudinal rigidity to withstand

spindle forces and facilitates disentanglement of sister chroma-

tids [58], is also a fundamental process that must be actively pro-

moted before chromosomes are allowed to segregate. However,

our results demonstrate that premature rDNA condensation im-

poses a problem for the proper nucleolar release of Cdc14. The

easiest way to circumvent this problem is by specifically placing

rDNA condensation under the control of Cdc14, so that, only

when the activity of this phosphatase is promoted, cells are

allowed to initiate nucleolar compaction. Therefore, the late

Cdc14-dependent rDNA condensation ensures that proper

segregation of this chromosomal region takes place without

affecting mitotic exit signaling.

The nucleolar proteome is largely conserved throughout evo-

lution [1, 59]. Excitingly, Hit1 shows sequence homology with

ZNHIT3, a human nucleolar protein. Furthermore, and similarly

to Hit1, ZNHIT3 regulates the abundance of NUFIP1, the human

functional Rsa1 homolog [25]. Cdc14 is also conserved in

humans, where two Cdc14 orthologs are expressed: CDC14A

and CDC14B [60]. Interestingly, CDC14B localizes to the nucle-

olus in interphase, and it is later dispersed throughout the cell at

the onset of mitosis, although there is controversy about its

actual role [60, 61]. CDC14B also relocalizes from the nucleolus

to the nucleus in response to genotoxic stress, which could be

important for an efficient activation of the DNA damage check-

point [62]. Hence, in light of our results, it would be interesting

to analyze whether nucleolar localization of CDC14B is affected

by the lack of ZNHIT3, which could help to clarify the functional

role of this phosphatase.
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Verheggen, C., Jády, B.E., Roth�e, B., Pescia, C., Robert, M.C., Kiss, T.,

et al. (2008). The Hsp90 chaperone controls the biogenesis of L7Ae

RNPs through conserved machinery. J. Cell Biol. 180, 579–595.

7. McKeegan, K.S., Debieux, C.M., and Watkins, N.J. (2009). Evidence that

the AAA+ proteins TIP48 and TIP49 bridge interactions between 15.5K

and the related NOP56 and NOP58 proteins during box C/D snoRNP

biogenesis. Mol. Cell. Biol. 29, 4971–4981.

8. Visintin, R., and Amon, A. (2000). The nucleolus: the magician’s hat for cell

cycle tricks. Curr. Opin. Cell Biol. 12, 372–377.

9. Audas, T.E., Jacob, M.D., and Lee, S. (2012). The nucleolar detention

pathway: A cellular strategy for regulating molecular networks. Cell

Cycle 11, 2059–2062.

10. Stegmeier, F., and Amon, A. (2004). Closing mitosis: the functions of the

Cdc14 phosphatase and its regulation. Annu. Rev. Genet. 38, 203–232.

11. Shou, W., Seol, J.H., Shevchenko, A., Baskerville, C., Moazed, D., Chen,

Z.W., Jang, J., Shevchenko, A., Charbonneau, H., and Deshaies, R.J.

(1999). Exit from mitosis is triggered by Tem1-dependent release of the

protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97,

233–244.

12. Visintin, R., Hwang, E.S., and Amon, A. (1999). Cfi1 prevents premature

exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus.

Nature 398, 818–823.

13. Rock, J.M., and Amon, A. (2009). The FEAR network. Curr. Biol. 19,

R1063–R1068.

14. D’Amours, D., Stegmeier, F., and Amon, A. (2004). Cdc14 and condensin

control the dissolution of cohesin-independent chromosome linkages at

repeated DNA. Cell 117, 455–469.
Current Biology 27, 3248–3263, November 6, 2017 3261

https://doi.org/10.1016/j.cub.2017.09.028
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref1
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref1
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref1
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref2
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref2
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref3
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref3
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref3
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref4
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref4
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref4
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref5
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref5
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref6
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref6
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref6
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref6
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref6
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref7
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref7
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref7
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref7
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref8
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref8
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref9
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref9
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref9
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref10
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref10
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref11
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref11
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref11
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref11
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref11
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref12
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref12
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref12
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref13
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref13
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref14
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref14
http://refhub.elsevier.com/S0960-9822(17)31193-4/sref14


15. Sullivan, M., Higuchi, T., Katis, V.L., and Uhlmann, F. (2004). Cdc14 phos-

phatase induces rDNA condensation and resolves cohesin-independent

cohesion during budding yeast anaphase. Cell 117, 471–482.

16. Torres-Rosell, J., Machı́n, F., Jarmuz, A., and Aragón, L. (2004). Nucleolar

segregation lags behind the rest of the genome and requires Cdc14p acti-

vation by the FEAR network. Cell Cycle 3, 496–502.

17. Clemente-Blanco, A., Mayán-Santos, M., Schneider, D.A., Machı́n, F.,

Jarmuz, A., Tschochner, H., and Aragón, L. (2009). Cdc14 inhibits tran-

scription by RNA polymerase I during anaphase. Nature 458, 219–222.

18. Shirayama, M., Matsui, Y., and Toh-E, A. (1994). The yeast TEM1 gene,

which encodes a GTP-binding protein, is involved in termination of M

phase. Mol. Cell. Biol. 14, 7476–7482.

19. Bardin, A.J., Visintin, R., and Amon, A. (2000). A mechanism for coupling

exit from mitosis to partitioning of the nucleus. Cell 102, 21–31.
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STAR+METHODS
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Antibodies

Anti-HA (HA.11) mouse monoclonal Covance Cat# MMS-101R; RRID: AB_291262

Anti-Myc rabbit polyclonal Gramsh Laboratories not commercially available at present

Anti-Myc (9E10) mouse monoclonal Covance Cat# MMS-150R; RRID: AB_291325

Anti-GFP Living Colors� (JL8) mouse monoclonal Clontech Cat# 632380; RRID: AB_10013427

Anti-b-actin rabbit polyclonal Abcam Cat# ab8227; RRID: AB_2305186

Anti-Clb2 (y-180) rabbit polyclonal Santa Cruz Biotechnology Cat# sc-9071; RRID: AB_667962

Anti-Nop1 (28F2) mouse monoclonal Santa Cruz Biotechnology Cat# sc-57940; RRID: AB_630044

Anti-Pgk1 mouse monoclonal Invitrogen Cat# 459250; RRID: AB_2532235

Anti-Sic1 (FL-284) rabbit polyclonal Santa Cruz Biotechnology Cat# sc-50441; RRID: AB_785671

Anti-tubulin (YOL1/34) rat monoclonal Abcam Cat# ab6161; RRID: AB_305329

Anti-mouse IgG Cy3-conjugated donkey polyclonal Jackson ImmunoResearch Cat# 715-165-151; RRID: AB_2315777

Anti-rabbit IgG FITC-AffiniPure goat polyclonal Jackson ImmunoResearch Cat# 111-095-144; RRID: AB_2337978

Anti-rat IgG FITC FITC-AffiniPure donkey polyclonal Jackson ImmunoResearch Cat# 712-095-153; RRID: AB_2340652

Anti-mouse IgG HRP-linked sheep polyclonal GE Healthcare Cat# NA931; RRID: AB_772210

Anti-rabbit IgG HRP-linked donkey polyclonal GE Healthcare Cat# NA934; RRID: AB_772206

Anti-V5-tag (Anti-Pk-tag) mouse monoclonal Bio-Rad Cat# MCA1360GA; RRID: AB_567249

Chemicals, Peptides, and Recombinant Proteins

Yeast extract Conda Cat# 1702.05

Bacteriological peptone Conda Cat# 1616.00

D-(+)-Glucose (Dextrose) VWR Cat# 24379.363

D-(+)-Raffinose pentahydrate Sigma Cat# R0250

D-(+)-Galactose Sigma Cat# G0750

Yeast nitrogen base (YNB) Becton Dickinson Cat# 233520

L-Adenine hemisulfate salt Sigma Cat# A9126

L-Alanine Sigma Cat# A7469

L-Arginine Sigma Cat# A5006

L-Asparagine Sigma Cat# A0884

L-Aspartic Acid potassium salt Sigma Cat# A6558

L-Cysteine Sigma Cat# C7352

L-Glutamic acid monosodium salt hydrate Sigma Cat# G5889

L-Glutamine Sigma Cat# G3126

L-Histidine Sigma Cat# H8000

myo-Inositol Sigma Cat# I7508

L-Isoleucine Sigma Cat# I2752

L-Leucine Sigma Cat# L8000

L-Lysine monohydrochloride Sigma Cat# L5526

L-Methionine Sigma Cat# M9625

L-Phenylalanine Sigma Cat# P2126

L-Proline Sigma Cat# P0380

L-Serine Sigma Cat# S4500

L-Threonine Sigma Cat# T8625

L-Tryptophan Sigma Cat# T0254

L-Tyrosine Sigma Cat# T3754

Uracil Sigma Cat# U0750

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

L-Valine Sigma Cat# V0500

Formaldehyde solution min, 37% Merck Cat# 1.04003.1000

Di-Potassium hydrogen phosphate (K2HPO4) Merck Cat# 1.05101.1000

Potassium dihydrogen phosphate (KH2PO4) Merck Cat# 1.04877.1000

40,6-Diamidino-2-phenylindole dihydrochloride (DAPI) Sigma Cat# 32670

Citric acid Sigma Cat# C0759

D-Sorbitol Sigma Cat# S1876

Zymoliase 100T US Biological Cat# 37340-57-1

Glusulase Perkin Elmer Cat# NEE154001EA

Potassium Acetate VWR Chemicals Cat# 26667.236

DL-Dithiothreitol (DTT) Sigma-Aldrich Cat# D0632

Zymoliase 20T US Biological Cat# C10091454

2-(N-morpholino) ethane sulfonic acid (MES hydrate) Sigma-Aldrich Cat# M8250

Ethylenediamine-tetraacetic acid disodium salt dehydrate (EDTA) Sigma Cat# E5134

Magnesium chloride hexahydrate (MgCl2) Sigma-Aldrich Cat# M0250

Photoflo Sigma Cat# P6148

Bovine serum albumin (BSA) Sigma Cat# A4503

Gelatine VWR Cat# 24360.233

Vectashield mounting media (without DAPI) Vector Laboratories Cat# H-1000

Sodium chloride (NaCl) Merck Cat# 7647-14-5

Potassium chloride (KCl) Merck Cat# 1.04963.1000

Tricloroacetic acid (TCA) Merck Cat# 1.00807.1000

Trizma� Base Sigma Cat# T1503

Complete EDTA-free protease inhibitor cocktail Roche Cat# 11873580001

Glass-Beads Sigma Cat# G9268

Acetone Merck Cat# 1.00014.1000

2-Mercaptoethanol Sigma Cat# M6250

Glycerol Sigma Cat# G7893

Bromophenol Blue Sigma-Aldrich Cat# B0126

37.5:1 Acrylamide:bisacrylamide solution (Protogel) National Diagnostics Cat# EC-890

Nitrocellulose Blotting Membrane 0,45 mm GE Healthcare Cat# 10600008

Western BrightTM ECL Advansta Cat# K-12045-D20

RNase A Sigma Cat# R4875

Ethanol 100% Emsure Cat# 1.00983.2511

Propidium iodide Sigma Cat# P4170

Glycine Sigma Cat# G7126

4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) Sigma Cat# H4034

Potassium hydroxide (KOH) Merck Cat# 1.05033.1000

Triton X-100 Merck Cat# 1.08603.1000

Sodium deoxycholate Sigma Cat# D6750

Phenylmethanesulfonyl fluoride (PMSF) Sigma Cat# P7626

A-Sepharose� CL-4B beads GE Healthcare Cat# GE17-0780-01

Lithium chloride (LiCl) Sigma Cat# L9650

Igepal CA-630 Sigma-Aldrich Cat# I3021

Sodium dodecyl sulfate (SDS) Sigma Cat# 71725

Pronase (Protease from Streptomyces griseus) Sigma Cat# P6911

Glycogen type IX from bovine liver Sigma-Aldrich Cat# G0885

Phenol-chloroform-isoamyl-alcohol mixture Sigma Cat# 101246723

iTaq Universal SYBR� Green Supermix Bio-Rad Cat# 172-5122MP2

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Phenol VWR Cat# 1.00206.0250

Chloroform VWR Cat# 22711.290

Sodium acetate trihydrate Merck Cat# 1.06267.1000

DNase I Invitrogen Cat# 18068-015

Critical Commercial Assays

SuperScript� III First-Strand Synthesis System Invitrogen Cat# 18080-051

Software and Algorithms

LAS AF Software Leica http://www.leica-microsystems.com

ImageJ Software NIH http://rsbweb.nih.gov/ij

7500 Real-Time PCR Software v2.06 Applied Biosystems http://www.thermofisher.com

Image Lab Software v5.1, build 8 Bio-Rad Laboratories http://www.bio-rad.com
CONTACT FOR REAGENT AND RESOURCE SHARING

In order to request strains, protocols, or any materials generated in this study, please contact the Lead Contact, Fernando

Monje-Casas (fernando.monje@cabimer.es).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains
All yeast strains are derivatives of W303, except from F3040, F3682 and F3683 (BY background), and their genotypes are described

in Table S1. Strains expressing 13Myc-tagged versions of Hit1 or Rsa1, eGFP-tagged proteins, and the strains for the BiFC analyses

were constructed by integrating the corresponding tag by homologous recombination using the plasmids described in [63], [64] and

[41], respectively. Construction of strains carrying deletions of the HIT1 or RSA1 genes was carried out using the same strategy, but

introducing a cassette with a selectable marker that replaced the endogenous gene, using the plasmids detailed in [63].

Culture/growth conditions
Cells were cultured in YPD (richmedium containing 1% yeast extract, 2%peptone and 2%dextrose), YPRaf (richmedium containing

1% yeast extract, 2% peptone and 2% raffinose), YPRaf/Gal (rich medium containing 1% yeast extract, 2% peptone, 2% raffinose

and 2% galactose), or SC (minimal medium containing 0.67% yeast nitrogen base, 2% dextrose, 0.13% drop-out mix, 0.002% tryp-

tophan, 0.002% histidine, 0.012% leucine, 0.002%methionine and 0.002% uracil). The drop-out mix included supplements required

for strains growth, andwas prepared bymixing 0.5 g adenine, 2 g alanine, 2 g arginine, 2 g asparagine, 2 g aspartic acid, 2 g cysteine,

2 g glutamine, 2 g glutamic acid, 2 g glycine, 2 g inositol, 2 g isoleucine, 2 g lysine, 2 g phenylalanine, 2 g proline, 2 g serine, 2 g thre-

onine, 2 g tyrosine and 2 g valine. Liquid cultures were grown in flasks, maintaining a constant 1/5 culture/flask volume ratio. Plates for

cell culture contained 25 mL of the previously detailed medium with 2% agar. Specific modifications in the composition of the

medium, as well as the growth temperature can be found in the figure legends.

METHOD DETAILS

Plasmids
The YCp50-LTE1 plasmid carrying the LTE1 gene under its own promoter and theURA3marker was previously described in [27]. The

plasmids for overexpression of Hit1, Rsa1 or Spo12 were generated by amplification of the corresponding ORF from yeast genomic

DNA and its subsequent cloning under control of the pGAL1-10 gene promoter in the pRS316 plasmid, originally described in [65].

Oligonucleotide sequences used for cloning of the genes are shown in Table S4.

Visualization of fluorescently tagged proteins
Samples for eGFP, Venus, mCherry, and DAPI imaging were prepared as described in [66]. In brief, samples were fixed for 10 min in

2.5% formaldehyde, washed twice with 0.1M potassium phosphate buffer (pH 6.6), and resuspended in 0.1M potassium phosphate

buffer (pH 7.4). When DAPI staining was also required, cells were further fixed for 10 min in 80% (vol./vol.) ethanol and finally resus-

pended in 10 mg/mLDAPI. Samples were analyzed and imaged using a DM6000microscope (Leica) equippedwith a 100x/1.40 NA oil

immersion objective lens, A4, L5, CFP, and TX2 filters, and a DF350 digital charge-coupled device camera (Leica). Images were pro-

cessed with LAS AF (Leica) and ImageJ (http://rsbweb.nih.gov/ij/) software. ImageJ was further used to quantify the intensity of the

fluorescent signal displayed by eGFP-tagged proteins in different cell compartments and to measure nucleolar area in cells

expressing Net1-eGFP.
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Immunofluorescence
Immunofluorescence was carried out as described in [67]. Specifically, cells were fixed in 3.7% formaldehyde and 0.1 M potassium

phosphate buffer (pH 6.4) for 15 min at room temperature for nucleolar proteins or overnight at 4�C for tubulin. Cells were then

washed twice with 0.1 M potassium phosphate buffer (pH 6.4), and resuspended in 1.2 M sorbitol in 0.12 M K2HPO4/0.033 M citric

acid (pH 5.9). Fixed cells were digested with 0.1 mg/mL Zymolyase 100T (US Biological) and 1/10 volume of glusulase (Perkin Elmer)

at 30�C for 15 min, washed once, and resuspended in 1.2 M sorbitol in 0.12 M K2HPO4/0.033 M citric acid (pH 5.9). Antibodies were

used at the concentrations described in Table S2. Microscope preparations were analyzed and imaged as previously described for

the visualization of fluorescently tagged proteins.

Mitotic spreads
Mitotic spreads were prepared as described in [66]. In brief, exponential cultures were grown overnight, and 2 mL of culture were

centrifuged and resuspended in 200 mL of 2% potassium acetate and 1M sorbitol solution. 2 mL 1M DTT and 5 mL of Zymolyase

20T (10 mg/mL) were added, and cells were digested at 30�C from 30-60 min. The reaction was stopped by centrifugation at 4�C
and 350 g, after which cells were resuspended in 1 mL of ice-cold MES-Sorbitol (0.1M 2-(N-morpholino) ethane sulfonic acid,

1 mM EDTA, 0.5 mM MgCl2, 1 M sorbitol). Spheroplasts were collected by centrifugation at 4�C and 350 g, and softly resuspended

in 200 mL of MES. Cell suspension was prefixed with 720 mL of 4% paraformaldehyde, and then placed on a clean ethanol-treated

slide, spread with a coverslip, and incubated at room temperature for 30 min. Spread preparation was washed with 1 mL of 0.4%

Photoflo (Sigma P6148) solution and dried at room temperature 2-12 hr. Spread sample was washed with 1 mL PBS for 10 min

and then incubated with 200 mL of blocking solution (0.2% gelatine, 0.5% BSA in PBS) for 1 hr. Next, sample was first incubated

for 2 hr with the primary antibody in a wet chamber at room temperature, and then for another 2 hr with the secondary antibody,

both prepared in blocking solution. After each incubation, antibodies were washed three times with PBS for 5 min. Finally, one

drop of VectaShield (Vector Labs) with 1 mg/mL DAPI was added, and spread with a coverslip. Antibodies were used at the concen-

trations described in Table S2. Microscope preparations were analyzed and imaged as previously described for the visualization of

fluorescently tagged proteins.

Western blotting
Protein extracts were prepared using the trichloroacetic acid (TCA) precipitation method detailed in [68]. Specifically, cells from

10 mL of a liquid culture were incubated for 10 min in 5% TCA. Samples were centrifuged for 3 min at maximum speed and 4�C.
Pellets were transferred to a clean microcentrifuge tube, centrifuged again to wash out residual TCA, and resupended by vortex

in 1 mL of acetone at room temperature. Once resuspended, the sample was centrifuged again for 6 min at maximum speed, and

the collected pellets were completely dried in a hood. Cells were resuspended in 100 mL of lysis buffer (50 mM Tris-HCl (pH 7.5),

1 mM EDTA, 50 mM DTT, 1 mM PMSF, and complete EDTA-free protease inhibitor cocktail (Roche)). After adding an equal volume

of glass beads, cells were broken in a multivortex for 40 min. Finally, 1x sample buffer was added, and the protein extract was boiled

before loading in a polyacrylamide gel. Electrophoresis was carried out using a SE600 Hoefer electrophoresis system or a Mini-Pro-

tean System (Bio-Rad), and proteins were transferred to a 0.45 mmnitrocellulosemembrane (GEHealthcare) using a TE62 tank trans-

fer unit (Amersham) or a Mini-Protean transfer system (Bio-Rad). Antibodies were used at the concentrations described in Table S3.

Protein signal was detected using the Western Bright ECL system (Advansta). Western blot images were acquired either exposing

AmershamHyperfilmTM chemiluminescence films (GE Healthcare) or using the ChemidocTMMP systemwith the Image Lab software

(Bio-Rad).

FACS analysis
FACS analysis was performed as detailed in [66]. Briefly, cells were fixed in 70% (vol./vol.) ethanol, incubated for 12 hr in PBS

with 1 mg/mL RNase A, and stained for 1 hr with 5 mg/mL propidium iodide (Sigma). After sonication, DNA content in the sample

was analyzed using a FACSCalibur flow cytometer (Becton Dickinson).

Chromatin immunoprecipitation
Chromatin immunoprecipitation was carried out as described in [69], with slight modifications. In brief, 50 mL of exponential cell cul-

tures were fixed with 1% formaldehyde for 15 min at room temperature and with rotation. Crosslinking reaction was stopped by add-

ing 2.5 mL of 2.5 M glycine and incubated for 5 min at room temperature. For cell extract preparation, pellets were resuspended in

300 mL of lysis buffer (50 mMHEPES-KOH (pH 7.5), 140 mMNaCl, 1 mM EDTA (pH 8), 1% Triton X-100, 0.1% sodium deoxycholate)

supplemented with protease inhibitors (1x Complete Protease Inhibitor Cocktail (Roche) and 1 mM PMSF), and then lysed in a

Multi-Beads Shocker (Yasui Kikai Corporation) for 60 min at 4�C, alternating pulses of 60 s at 2500 rpm with 60 s rest. The whole

extract was sonicated in a Bioruptor for 20 min, alternating 30 s high-intensity pulses with 30 s rest, in order to fragment the chro-

matin. Samples were centrifuged for 15 min at 13000 rpm and 4�C to eliminate cell debris. 20 mL of supernatant were processed

as input and 200 mL were immunoprecipitated. For the immunoprecipitation, 5 mL of anti-Pk antibody SV5-Pk1 (Bio-Rad) were

used. After overnight incubation at 4�C with rotation, 50 mL of Protein A-Sepharose� CL-4B beads (GE Healthcare), previously

equilibrated in lysis buffer, were also added to the sample, which was incubated for another 2-4 hr at 4�C. After the incubation,

the sample was washed twice with lysis buffer, another two times with washing buffer (10 mM Tris-HCl (pH 8), 1 mM EDTA,

250 mM LiCl, 0.5% Igepal and 0.5% Triton X-100), and finally one last time with TE (10 mM Tris-HCl (pH 8), 1 mM EDTA). Chromatin
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was eluted in 60 mL TE supplemented with 1%SDS for 10 min at 65�C. 20 mL of chromatin and input samples were treated with 20 mL

of fresh TE plus 1%SDS and 1.2 mL of 50mg/mL pronase for 2 hr at 42�C, and then de-crosslinked for 6 hr at 65�C. Next, 360 mL of TE,
10 mL of 10 mg/mL glycogen and 35 mL of 5 M LiCl were added to the samples and mixed. The same volume of phenol-chloroform

was used to clean the DNA. The supernatant was transferred to a new tube and 1 mL of 96% ethanol was added. Samples were

incubated overnight at �20�C and then DNA was precipitated by centrifugation at 12000 g and 4�C. DNA pellets were washed

with 70% ethanol, dried, and resuspended in 40 mL TER (20 mL of 10 mg/mL RNaseA in 1 mL of TE). Samples were incubated at

37�C for 1 hr. RNase was diluted by adding 160 mL of TE. Inputs were diluted 1:25. Real-time quantitative PCR was performed using

iTaq universal SYBR Green (Bio-Rad) in a 7500 Fast Real-Time PCR machine (Applied Biosystems). Oligonucleotide sequences for

real-time PCR amplifications were originally described in [70, 71] and are shown in Table S5.

Quantification of rRNA transcription
For the analysis of RNA Pol I transcripts, 10 mL of culture were harvested, pelleted, and resuspended in 400 mL of TES buffer

(10 mM Tris-HCl (pH 7.5), 10 mM EDTA, 0.5% SDS). An equal volume of phenol was added to the sample and, after agitation

with a vortex, tubes were incubated for 45 min at 65�C. The sample was then incubated at 4�C for 5 min and centrifuged for

5 min at 13000 g and 4�C. The aqueous phase was transferred to a new tube, extracted again with an equal volume of phenol,

and one last time with an equal volume of chloroform. The final aqueous phase was transferred to a new tube, mixed with 40 mL

of 3 M Sodium Acetate (pH 5.2) and 1 mL of ethanol, and precipitated for 1 hr at �20�C. After centrifugation, the RNA pellet was

washedwith 70%ethanol, dried, and finally resuspended in 50 mL diethylpyrocarbonate-treated H2O. Quantitative RT-PCR reactions

were performed in a 7500 Real-Time PCR System (Applied Biosystem). To this end, 2 mg of total RNA were first treated with Dnase I

(Invitrogen), and cDNAwas synthesized using the SuperScript III Reverse Transcriptase kit (Invitrogen). Then, quantitative PCRswere

carried out using a 1:5 dilution of the cDNA sample, the primers shown in Table S5, and iTaq Universal SYBR� Green Supermix.

Fluorescence values, Ct values and all quantifications were obtained using the 7500 Real-Time PCR Software v2.06.

Genomic DNA extraction
Genomic DNA was prepared starting from 5 mL of an exponential cell culture. Cells were first pelleted by centrifugation for 5 min at

2500 g,washedwith distilledwater, and finally resuspended in 0.9Msorbitol, 0.1MEDTA (pH8), 1% b-mercaptoethanol and 0.5mg/mL

Zymolyase 20T. The mixture was then incubated for 60 min at 37�C. The generated spheroplasts were pelleted by centrifugation for

1 min at 700 g, and lysed in 250 mL of 20mMEDTA, 50 mM Tris-HCl (pH 8) and 0.5%SDS for 30 min at 65�C. Extracts were cleared at

4�C by adding 85 mL of 5 M potassium acetate (pH 4), and cell debris were pelleted by centrifugation for 15 min at 13000 g. After this,

1.2mL of 96%ethanol were added to the supernatant, and themixture was incubated for 15min at�20�C.Genomic DNAwas precip-

itated by centrifugation for 15min at 13000 g, and the pellet was resuspended in 300 mL of TE buffer and treatedwith 20 mgRNase A for

1 hr at 37�C. After RNase treatment, 300 mL of a phenol:chloroform:isoamyl alcohol (25:24:1) solution were added, and the mixture

was gently swirled and centrifuged for 15 min at 13000 g. The aqueous phase was transferred to a new tube, and 10 mM NaCl and

2 volumes of 96% ethanol were added to the solution. After 30 min at �20�C, DNA was pelleted by centrifugation for 15 min at

13000 g. The pellet was dried and finally dissolved in TE buffer. The concentration of the extracted genomic DNA was determined

by spectrophotometry.

Estimation of rDNA copy number in genomic DNA
Total DNA was diluted to 25 ng/mL. qPCR reactions were carried out in triplicate on an Applied Biosystem 7500 Real-Time PCR

System. Each amplification reaction contained 10 mL iTaq Universal SYBR Green Supermix (Bio-Rad), 2 mL DNA template and

500 nM of each primer in 20 mL total reaction volume. PCR efficiency for each primer was determined from a standard curve. The

number of copies of each specific locus per strain genome was estimated by normalizing the absolute copy number of the target

(the NTS2 and ITS2 regions of the rDNA locus or the TUB2 control gene) to the reference gene PDA1. Primers for the amplification

of the previous DNA sequences are described in Table S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of the statistical analysis of the experiments, including the specific measure used to estimate the variation within each group

of data and the exact value of n, can be found in the figure legends.
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